Seasonal Contributions to Climate Feedbacks in the NCAR CCSM3.0

Patrick Taylor
CERES Science Team Meeting
November 4, 2009

Uncertainty in Model Predictions

Climate Sensitivity

Climate Sensitivity Parameter:

$$\lambda = \frac{\Delta F_{ext}}{\Delta T_s}$$

Assuming a small perturbation,

$$\Delta F_{ext} \approx \Delta R_T + \Delta R_r + \Delta R_C + \Delta R_\alpha$$

This is justified considering a first-order Taylor Series expansion of R₂ in terms of R₁.

$$R_2 \approx R_1 + \frac{\partial R_1}{\partial x} \delta x + \frac{\partial R_1}{\partial r} \delta r + \frac{\partial R_1}{\partial T} \delta T + \frac{\partial R_1}{\partial C} \delta C + \frac{\partial R_1}{\partial \alpha} \delta \alpha$$

Climate Sensitivity

Substituting into climate sensitivity parameter

$$\lambda = \frac{1}{\Delta T_s} \left(\Delta R_T + \Delta R_r + \Delta R_C + \Delta R_\alpha \right)$$

Using the definition of the feedback sensitivity parameter, $\lambda_c = \frac{\Delta R_c}{\Delta T}$, we obtain

$$\lambda = \lambda_T + \lambda_r + \lambda_C + \lambda_\alpha$$

Strictly, radiative perturbations are defined as partial derivatives.

$$\Delta R_C = \frac{\partial R}{\partial C} \delta C$$

Model Information

- NCAR CCSM3.0
 - T85 resolution- 1.41°x1.41°
 - Coupled Ocean
- SRESA1B IPCC AR4
 - 1% per year increase in CO₂ until 2100.
 - Approximate doubling of CO₂ by 2100.

MCICA Subcolumns

Large-scale model Gridbox

Stochastically sample gridbox mean cloud frequency

Cloud Generator Governing Equations

$$C_{j,k} = \begin{cases} 0, & \text{for } x_{j,k} \le 1 - C_k \text{ (clear)} \\ 1, & \text{for } x_{j,k} > 1 - C_k \text{ (cloudy)} \end{cases}$$

$$x_{j,k} = \begin{cases} x_{j,k-1}, & \text{for } x_{j,k-1} > 1 - C_{k-1} \text{ (cloudy cell above)} \\ RN_{j,k} (1 - C_{k-1}), & \text{for } x_{j,k-1} \le 1 - C_{k-1} \text{ (cloudless cell above)} \end{cases}$$

Linearity Test

$$R_2 - R_1 \approx \frac{\partial R_1}{\partial x} \delta x + \frac{\partial R_1}{\partial r} \delta r + \frac{\partial R_1}{\partial T} \delta T + \frac{\partial R_1}{\partial C} \delta C + \frac{\partial R_1}{\partial \alpha} \delta \alpha$$

Results: TOA Radiative Forcing and Perturbations

Seasonal Cycle

Global Mean: Longwave

CCSM3.0 vs. BMRC

Colman (2003)

Seasonal Variations: Water Vapor, LW

Seasonal Variations: Clouds, LW

Seasonal Variations: High Cloud Response

Global Mean: Shortwave

CCSM3.0 vs. BMRC

Seasonal Variations: Surface Albedo, SW

Seasonal Variations: Ice Response

Seasonal Variations: Clouds, SW

Seasonal Variations: Low Cloud Response

Seasonal Variations: Cloud LWP Response

Seasonal Variations: Clouds, Net

Summary and Conclusions: Seasonal Variability

- The global-mean seasonal contributions to the LW feedbacks show no seasonal variability.
- Differences are exhibited between the globalmean seasonal contributions to the SW feedbacks in the NCAR CCSM3.0 and the results of Colman (2003).
 - Small differences in surface albedo
 - Large differences in cloud feedback
- The pattern of the zonal mean contributions between the the CCSM3.0 and Colman (2003) are small, however large inter-model differences in radiative perturbation magnitudes were found.

Selected References

- Colman, R., 2003: Seasonal contributions to climate feedbacks. *Climate Dyn.*, **20**, 825-841.
- Pincus, R., H. W. Barker, and J.-J. Morcette, 2003: A fast, flexible, approximate technique for computing radiative transfer in inhomogeneous cloud fields. *J. Geophys. Res.*, **108**, 4376, doi: 10.1029/2002JD003322.
- Raisanen, P., H. W. Barker, M. F. Khairoutdinov, J. Li, and D. A. Randall, 2004: Stochastic generation of subgrid-scale cloudy columns for large-scale models. *Quart. J. Roy. Meteor. Soc.* **130**, 2047-2067.
- Randall, D. A. and coauthors, 2007: Climate Models and Their Evaluation. In: *Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change* [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor and H. L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
- Soden, B. J. and I. M. Held, 2006: An assessment of climate feedback in coupled ocean-atmosphere models. *J. Climate*. **19**, 3354-3360.
- Solomon, S. and coauthors, 2007: Technical Summary. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor and H. L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
- Wetherald, R. T., and S. Manabe, 1988: Cloud feedback processes in a general circulation model. *J. Atmos. Sci.*, **45**, 1397-1415.

Forcing-Response-Feedback Paradigm

Summing Point

$$g = \sum_{i} g_{i} = \sum_{l} \frac{\lambda_{i}}{-\lambda_{P}}$$

Feedback Uncertainties

 $\lambda_w = +1.80 \pm 0.18 \text{ Wm}^{-2}\text{K}^{-1}$

 λ_{Γ} =-0.84 ±0.26 Wm⁻²K⁻¹

 λ_{q} =+0.26 ±0.08 Wm⁻²K⁻¹

 λ_{C} =+0.69 ±0.38 Wm⁻²K⁻¹

Feedback Sensitivity Parameter

■ Feedback Sensitivity Parameter: $\lambda_C = \frac{\Delta R_C}{\Delta T_s}$

■ TOA Radiative Perturbation: $\Delta R_C = \frac{\partial R}{\partial C} \delta C$

■ Calculation of TOA Radiative Perturbation (Wetherald and Manabe 1988): $\Delta R_C = R(x_1, T_1, r_1, C_2, \alpha_1) - R(x_1, T_1, r_1, C_1, \alpha_1)$

Research Question

What is the seasonal distribution of the radiative contributions to global, annual mean feedbacks?

△CRF-adjusted

Net Cloud Radiative Forcing

Seasonal Variations Temperature, LW

